

GRUPPI CARRELLATI PER APPLICAZIONI SPECIALI

I gruppi filtroaspiranti carrellati speciali mod. DCA sono idonei per la reimmissione dell'aria filtrata sul posto di lavoro o per l'emissione in atmosfera.

Sono apparecchi compatti, montati su ruote, spostabili a piacere, che riescono ad avere 200 m² di superficie filtrante per m² di pavimento.

Negli ambienti condizionati è possibile depurare senza sbilanciare l'impianto e senza diffondere inquinanti. L'aria inquinata viene captata alla sorgente attraverso una vasta gamma di bracci aspiranti, facilmente posizionabili dall'operatore. Dopo il trattamento, in diversi stadi filtranti ad azione progressiva, di tipo meccanico, filtri in fibra, assoluti e a carboni attivati, l'aria depurata viene reimmessa nell'ambiente di lavoro oppure estratta tramite camino di espulsione in atmosfera.

Ideale per i settori:

- Cosmetico
- Farmaceutico
- Chimico
- Gomma
- Plastica
- Alimentare

- Elettronico
- Aeronautico
- Militare
- Restauro
- Marmi
- Orafo

Versioni speciali:

- ATEX
- INOX AISI 304
- INOX AISI 316

MODELLO DEPURATORE	1200	2700	3900	5500
Portata Nm³/h	1200	2700	3900	5500
Dimensioni mm	940x660x1210	940x870x1210	1200x1120x1210	1035x1200x2360
Peso kg	205	285	420	586
Sacco filtrante	1	1	1	1
Filtri a parete	2	4	4	6
Filtri assoluti	2	4	4	6
Carbone attivo It	da 42 a 162	da 84 a 324	da 112 a 432	da 168 a 648
Pannelli di carbone	2	4	4	6
Motore kW	1,5	2,2	3	4

DATI TECNICI DCA

I filtri a carboni attivi vengono utilizzati allo scopo di adsorbire inquinanti ed effluenti di natura gassosa e di rimuovere gli odori presenti nell'aria. Essi sono composti da materiali di natura prevalentemente vegetale organica (noce di cocco) che si presentano sotto forma di granuli, con dimensioni da 3 a 5 mm, o di scaglie. I filtri sono disponibili nei seguenti modelli:

- a pannelli piani, con carboni attivi trattenuti entro il telaio della cella filtrante da reti microstirate;
- a cartucce, costituite da 2 cilindri coassiali in lamiera microstirata contenenti i carboni attivi, montate con innesto a baionetta su una piastra metallica;
- a tasche rigide multidiedro;
- filtro multidiedro ad alto contenuto di carbone attivo.

Il funzionamento dei filtri a carboni attivi è basato sul processo di adsorbimento, ovvero sul fenomeno di diffusione molecolare tra i componenti in fase gassosa ed un substrato solido.

Le molecole di gas aderiscono alla superficie del solido e danno luogo alla formazione di uno o più strati sovrapposti di sostanza, creati dall'instaurarsi di forze di attrazione elettrostatiche (forze di Van Der Waals) o di forze adesive conseguenti a fenomeni di capillarità. Poiché si tratta di un fenomeno di migrazione molecolare tra una fase gassosa ed una solida, una caratteristica fondamentale del materiale adsorbente è la superficie attiva che permette il contatto tra i componenti.

Nel carbone attivo la presenza diffusissima di microporosità consente uno sviluppo superficiale estremamente vasto.

I pori microscopici si sviluppano in profondità diminuendo man mano la loro sezione e forniscono uno sviluppo superficiale che può arrivare a 1.700 metri quadrati per grammo di materiale. Le capacità adsorbenti dei carboni attivi sono particolarmente indicate per l'abbattimento dei composti organici con un peso molecolare compreso tra 50 e 200. In genere, i composti che presentano un peso molecolare minore non vengono adsorbiti sufficientemente a causa delle piccole dimensioni; al contrario, i composti organici che presentano alti pesi molecolari vengono adsorbiti così fortemente che risulta poi estremamente difficile rimuoverli durante la fase di rigenerazione.

La capacità di adsorbimento viene espressa in peso percentuale ovvero in kg di contaminante organico adsorbito per 100 kg di carbone attivo utilizzato.

La capacità è compresa tra valori minimi pari all'1% fino avalori massimi del 30%. La capacità di trattenere i contaminanti organici è influenzata da una serie di parametri, tra i quali la temperatura, l'umidità, la pressione, il tipo e la concentrazione degli inquinanti, il loro peso molecolare e la presenza di particolato nel flusso da trattare. A temperature ed umidità più basse la ritenzione dei contaminanti organici è maggiore.

Per questo motivo gli adsorbitori a carboni attivi operano di solito a temperature inferiori ai 50°C e con umidità relativa non superiore al 70%. Allo stesso modo, maggiore è la presenza del particolato nel flusso d'aria da trattare tanto più diminuisce l'adsorbimento; per questo motivo il particolato deve essere rimosso con opportuni prefiltri. Nel caso in cui non vi sia l'esigenza di garantire un'elevata purezza dell'aria ambiente è necessario posizionare il filtro finale a valle di quello a carboni attivi in modo da evitare il trascinamento in ambiente di eventuali tracce di polverino di carbone.

La scelta del filtro si basa sulla portata d'aria trattata dall'impianto oppure su un metodo empirico che fornisce la quantità in peso di carboni attivi in funzione dell'ambiente trattato e del tipo di applicazione. La velocità del flusso d'aria all'interno dei filtri deve essere mantenuta entro valori piuttosto bassi per permetterne un corretto funzionamento. In corrispondenza di questi valori la perdita di carico dei filtri piani è pari a circa 50 Pa per ogni cm di profondità del filtro.

É molto difficile calcolare con esattezza la capacità di adsorbimento del carbone attivo nei comportamenti di una specifica sostanza. È più utile effettuare una classificazione di spettro.

Definendo quattro classi di adsorbimento si possono mediamente prevedere i risultati indicati nella successiva tabella.

DCA - Capacità di adsorbimento dei filtri a carboni attivi **DATI TECNICI**

BASSISSIMO 1%	BASSO 5%	MEDIO 10%-15%	ALTO 25% - 30%			
Acetilene	Acetaldeide	Acetato di metile	Acetato di amile	Crotonaldeide	Nonano	
Anidride Carbonica	Acido Bromidrico	Acetone	Acetato di butile	Cicloesano	Ottano	
Etano	Acido Cloridrico	Acido cianidrico	Acetato di cellosolve	Cicloesanolo	Ossido di mesitile	
Etilene	Acido Fluoridrico	Acido formico	Acetato di etile	Cicloesanone	Ozono	
Idrogeno	Biossido di Azoto	Acido iodidrico	Acetato di sioropile	Cicloesene	Pentanone	
Metano	Butano	Acido nitrico	Acetato mietilcellosolve	Decano	Percloroetilene	
	Butene	Acroleina	Acetato di propile	Dibromoetano	Propilmercaptano	
	Dimetilacetilene	Alcool metilico	Acido acetico	Diclorobenzene	Silicato di etile	
	Formaldeide	Ammoniaca	Acido acrilico	Dicloroetano	Stirene monomero	
	Anidride Solforosa	Anidride Solforica	Acido butirrico	Dicloroetilene	Trementina	
	Idrogeno Seleniato	Bromuro di etile	Acido lattico	Dicloroetiletere	Tetracloroetano	
	Propano	Bromuro di metile	Acido propionico	Dicloronitroetano	Tetracloroetilene	
	Propilene	Butadiene	Acido solforico	Dicloropropano	Tetracloruro di carbonio	
		Cloro	Acrilato di etile	Dietilchetone	Toluene	
		Cloruro di etile	Acrilato di metile	Dimetilsolfato	Toluidina	
		Cloruro di metile	Acrilonitrile	Diossano	Tricloroetilene	
		Cloruro di vinile	Alcool amilico	Dipropilacetone	Xilene	
		Diclorodifluorometano	Alcool butilico	Essenze		
		Diclorotetrafluorometano	Alcool etilico	Etere amilico		
		Dietilammina	Alcool isopropilico	Etere butilico		
		Esano	Alcool propilico	Etere isopropilico		
		Esene	Anidride acetica	Etere propilico		
		Etere etilico	Anilina	Etilbenzene		
		Etere metilico	Benzene	Etilmercaptano		
		Etilammina	Bromo	Eptano		
		Fluorotriclorometano	Butilcellosolve	Eptene		
		Formiato di etile	Canfora	Fenolo		
		Fosgene	Cellosolve	Iodio		
		Freon	Clorobenzene	Iodoformio		
		Gas tossici	Clorobutadiene	Kerosene		
		Idrogeno solforato	Cloroformio	Mentolo		
		Isoprene	Cloronitropropano	Mercaptani		
		Ossido di Etilene	Cloropricrina	Metilbutilacetone		
		Pentano	Cloruro di butile	Metilcellosolve		